
,.

31) Elcctromagnctic l’lasma Particle Simulations
0 1 1 tllc IIltd l)clta l)mdld com~mtc!r

J . Watlg, 1’. C. I,icwcr, atld]’. I,ystm

Jd l’ropulsioxl l,al)oratory, Califor]]ia IIlstitute of ~’cclIIIology

V. l)ccyk

lJIlivmsity of Califorrlia, J,OS AIIgclm

-A bstr.act

A tllrcc-dirl~crlsior,al elect.ror[~ag[wtic 1’IC code has
been dcwclopcd on the 512 node Intel ‘Jbuc})stone IJclta
MIMI) parallel computer. ‘l’his code is based on the
General Concurrent I’IC algorithm which uses a do
]I)ain dccolnposition to divide the computation arr)ong
the processors. ‘J’hc 3D sirnu]ation domain can tm par-
titioned into 1-, 2-, or 3-dimrmsional subdornains. I’ar-
ticlcs nmst be exchanged between processors as they
rllovc among the subdomains. q’he Intel I]elta a l l ows
one to usc this code for very-large-scale simulations
(i.e. over 10s particles and 106 grid cells). ‘l%e par-
allel ef[icicncy of this code is lnea~ured, and the overall
code pcrforrllance on the l>elta is compared with that
ori Cray sullercornputers. It is shown that our code
rurls with a high parallel efficiency of > 9590 for large
size I)roblems. ‘1’hc particle push time achieved is 115
nsccs/partic.lc/tirne step for 162 million particles on 512
rlodcs. Comparing with the performance on a Cray C90,
this rc~)rescrlts a factor of 58 s~lecdup. ‘l’he code uses a
finite-diflcrcncc]cap frog method for field SOIVC which is
significar]tty rnorc efllcient than fast Fourier transforms
on parallel computers.

J. lntrgduction

Corllputcr particle simulation h= bccomc a standard
method in space and laboratory plasma jhysics re-
search. A partic]ein-cell (PIC) code simulates plawlla
l,hcnorIlcna by modeling a plasma as hundreds of thou-
sands of test particles and following the evolution of the
orbits of individual test particles in the self-consistent
clcc.tromagllctic field. Each tilne step in a }’IC c o d e

(lo]) yrig},t @ 1994 by the authorx. I’ublished by the An,erican
Ir,stitutc of Aeronautics and Astronautics, INC. with pennis..iou.

corlsists of two nlajor stages: the particle push and the
field solve. Since the particles can be located anywhere
within the simulation domain but t}lc macroscopic field
quantities are defined only on discrete grid points, the
particle push uses two interpolation (gather/scatter)
steps to link the particle orbits and the field comp~
ncmts.

While the particle simulation method allows one to
study the plawna phenomena fror[l the very fundan~en-
tal lCVC1) the scope of the physics that can bc resolved
in a simulation study critically depends on the compu-
tational power. 7’he computational time/cost and conr-
puter rllerl]ory size restricts the tinm scale, spatial scale,
and number of particles that can bc used in a simula-
tiorl. ‘J’hc cost of running three dimcnsiona] electronlag-
nctic I’IC calculations on existing sequential supcrconl-
prrters limits the problems which can be addressed.

Recent advances in massively parallel supcrcornput-
ers have provided con]putational pcmibilities that were
previously not conceivable. The object ivcs of this st ud y
are to develop a three-dimensional clcctromaglmtic I’IC
code for MIMIJ parallel computers and to test the full
potcnt,ial of using parallel computers for very-large-scale
I)arf,iclc sirrlulations. In section 2, our 31) PIC code is
discussed. ‘l’his code is in]plcrncntcd on the 512 node
]ntcl ~’ouchstonc Delta parallel conlputer at Caltcch us-
ing the Genera] Concurrent PIC (GCPIC) algorithnl[l].
Section 3 discusses the code pcrforrllance. “1’hc parallel
efliciencics of running the code for fixed problerl]s and
scaled problems w’ill bc discussed, and the overall pcr-
forrrlance of the code on the Intel I)clta will be cor[lpared
with t}]at on Cray supercorrlputers, Section 4 contains
a sunlrllary and conclusions.

~. A }’arallel 31) Elcctronlagnctic PIC Code

‘1’he Algorithm

1

‘1’he basic procedures of a generic electro~nagnetic
I’IC code arc rLs follows:
(1) l)cfine the initial conditions of the particles and
fields;
(2) Ilistribute the charge and current of the particles to
the nearby grid poin!s to obtain the charge density p
a~ld c.urrellt density J at each grid point;
(3) Solve the hfaxwel] equations

T./.E p-p (1)

f/.I7=Q (2)

(917-z-. cv xi-J”-r% (3)

(4)

to obtain the electromagnetic field at each grid point;
(4)]ntcrpolatc the electromagnetic field on the particle
position to obtain the force on each particle; and
(5) [Jpdate the particle velocity and position frolll the
Newton’s second law

(5)

]n our code, the relativistic equation of motion is used
for particle push. ‘1’hc trajectory of each particle is inte-
grated using the usual time-centering leapfrog sc}lcme:

wllerc the suj~crscripts n +- 1/2 and n + 1 represents the
tin]c step, and the y is the relativistic gamma.

‘J’he frcld equations are most commonly solved by
trarlsforlll methods SUC}I as fast F o u r i e r t r a n s f o r m
(1’1’”’1’). Ilowcver, transform methods are ‘(global” meth-
ods because the field information from every point in
the simulation domain contritrutes to each single flcld
har~l]onic. in general, global methods are not very cfli-
cicrlt fc)r])arallel computers because they involve a large
ar~iount of interprocezsor communications which may
eventually bcco]nc the bottleneck. For a code to run
cfficient]y in parallel, a mct}lod that updates t}le field
})urely from the local data is preferred.

Elorn the Maxwell’s equations, one notes that eq(l)
will always be satisfied as long as the charge conscrva-”
tion condition

afr-r-=-v.J-al

is satisfied, hence, the elcctrolrlag~letic field can be up
dated frorl, only the two Cllr] hfaxwcll)s equations (3)
and (4) if onc can enforce rigorous charge conservation
nun)erically. A rigorous charge conservation n}ethod has
been developed in the Magic and Quicksilver codes by
Sandia National I,aboratorim[2] and the ‘JYistan code by
IIurlcrr)an et al[3,4]. In this scherllc, the electromagnetic
frcld is updated locally by firlitc-difTcrencc leapfrogging:

@ 1/2 _ ~p- 1/2 _- - dt[c v xi”] (9)

This schernc also requires the use of a complex stag-
gered grid rncsh syst.crrl in which ~ is defined at midp-
oints of cell-edges while l; is defined at Illidpoints of
cell-surfaces. ‘1’his ensures that the charlge of 11 flux
through a cell surface equals the negative circulation of
E around that surface and the change of E flux through
a cell surface (offset grid) equals the circulation of J]
around that surface rlrinus the current through it. ‘l’his
frnite-difference leapfrogging scheme is used for our field
solve.

lmplerncntation on a MIMI) Parallel Conlputer-.—

‘J’here are baqical]y two types of parallel comput-
ers: Multiple-Instruction Multiple-I)ata (MIMI)) and
Single-instruction Multiple-Data (SIMD). In a hfIMI>
parallel computer, each procmsor may execute a sep-
arate stream of instructions while in a SIMI) parallel
computer, each processor executes the same instructions
sir[mttaneously.

Our 31) electronlagnctic 1’](I code is implemented on
a MIMI) parallel computer, the Intel ‘J’ouchstorre Dc]ta
computer at Cal tech. ‘J’he Intel Touchstone Delta sys-
tclIl consists of an ensenlble of nodes which are inde-
pendent processors with its own memory connected as a
twcdimensional mesh. There are 512 numerical nodes.
Each numerical node is i860 chip ba~ed. l’he node op-
erates at 40 MIIz and hag a peak speed of 80 single-
precision Mflops and 60 double-precision Mflops. The
available lnenlory on I)elta is about 12 Mbytes per node
or an equivalent of 6.1 (;hytcs on all 512 nodes.

‘J’hc code is irllplcrnentcd using the general concurrent
I’lC (GCI’IC) algorithnl developed by I,iew’er and I)e-
cyk[l]. ‘1’hc GCI’lC algorithm is designed to nlake the
nlost cornputationally intensive portion of a PIG code,
the particle computation, run efhcicntly on a MIMI)
paral]cl cor]lprrter. ‘1’he algorithni uses a domain de
corr]position to divide the conlputation among parallel
processors. ~ach processor is assigned a subdornain and
all t}lc particles in it. When a particle moves frorll one

2

.,
.!

subdon)ain to another, it nmst be passed to the appro
~,riatc processors. For the code to run efficiently in par-
allel, the domain decomposition needs to be such that
the subdornains have roughly the same number of par-
ticles for load balance. in our code, the computation
donlain can bc partitioned into I-, 2-, or 3-diIncrlsional
subdor]lains (‘(slabs”, “rods”, or ‘(cubes”).

‘J’hc code is written using l;xprcss-Fortran and corn-
[)ilcd into a single object code. lath processor runs
tllc object with a separate progralrl counter. Eaclr pr~
ccssor also has its OWJI particle arrays and field arrays.
‘1’llc cor[~prrtations irl cac}l processor arc linked together
through l]wssagc-passing and global communications.
‘J’hrcc major lncssagc-passing operations arc involved in
tllc cocle: parlicle trade, guard cell er-change , and guard
CC1l summation. Guard CCIIS are the neighboring grids
outside a processor’s subdornain boundary, also stored
by tllc processor, whic}l are needed to insure that the
interpolatior)s (gather/scatter) can bc performed locally
(rlc~ intcrproccssor communication).

J’arlicle tmde passes the particles bctwccn processors.
If a ~)article went out of bounds of a subdomain bound-
ary, it is placed in a buftcr. When all particles have bccrr
checked, the buffer is passed to the neighboring proccs
sc)rs, and at the sarnc tirnc, incoming particle buflcrs
arc rcccivcd from the neighboring processors. Guard
cell erchange and guard cell summation arc for colnnlu-
nication of ~cld inforr]]ation. When updating the field,
the ~ and 1) field in guard CCIIS need to bc cxchangcd
bctwccr) neighboring processors so all processors have
tllc updated cor]ditions. When dcpositirrg the current,
those particles near a subdomain boundary will con-
tribute to the current on the grid points on both sides
of t}iis boundary. }Ience, the guard cell currents need
to bc passed to the ncig}lboring processors and added
to the currents at the appropriate interior points of the
rleiglrboring processors.

l’ig. 1 shows the flow chart of our parallel 31) clcc-
trornag[lctic PIC code. Note that the rounded blocks
rcprcscnt the steps in a sequcrrtial EM PIC code and
tllc four rectangular blocks are the ncw steps needed in
tllc parallel rncssagc-pasaing code.

3. }’crformancc Analysis.—— ——

‘J’hc perforrllance of our parallel 31) clcctronlagnetic
1’lC code IIM been rncwwred in t}lrec ways: 1) fixed
problcnl size analysis; 2) scaled problem size analysis;
and 3) comparison ofthc pcrforrrlancc with that on Cray
supcrcorllputcrs.

An important mcrwure of the perforrrlance on a con-
currerrt computer is the parallel efficiency t which mea-

sures the effects of corn~lmnicatiorl overhead and load
imbalance[5]. If there were no communications involved
and the procewor loads were perfectly balanced, the
parallel eflicicncy would be c = 100%. In this paper
wc shall focus only on the effect duc to comnlunication
overhead. ‘J’hc simulation runs used in this section all
have near-perfect load balance because the particle dis-
tributions arc nearly uniforr[l. (I)ynarnic. load balance
for non-uniform particle distritrutiorls has been investi-
gatcd in a ’21) I)IC code by Ferraro et al[6].)

Fixed l’roblcrrl Size Analysis-.

In a fixed problcrrl size analysis, we compare the times
to run tllc sarnc prob]crrl on an incrc~sirlg nur[lber of
proccasors. Since the total problcm size is fixed, the
problcrn size on each individual processor dccrcrrscs as
the number of processors incrcaws.

I,ct us define I’(N) to be the time elapsed on a par-
allel corn~)utcr with N nodes. For a problem that can
bc fit into a rllinirmrrn of JVm>in processors, the parallel
cfflcicncy N > A’n,im proccsssors is defined by

~’(~rf)in)~n,ir,C (N) =- - - - - –
1’(N)N

(lo)

For the fixed problem size analysis, we have consid-
ered two problcrrls. ‘J’he size of the first problcrn (Fl)
is 2.22 x 105 particles and 323 =. 32768 grid cells (W 7
particle/cell). ‘J’his problcrn can be fit on a single pr~
ce~~or on I)clta. ‘1’hc second problcm (F2) ha~ 1.4 x 1 07

~,articlcs and 643 = 2.62 x 105 cells (* 54 particle/cell).
F’2 requires a tninirrmr]rl of 64 processors to run. F1
and F2 were run using processors from NP = N,~,in to
NP = 512. 31) domain partitions are used. ‘1’hc parallel
cfflciencics for F] and P2 as a function of NP are s}lown
in Fig. 2a and the run times for different portions of
the code are shown in Fig. 2b.

‘J’he results show that the efficiency for Fl drops sig-
nificantly as the processor number is increzwed ({(512) e
24~0). ‘J’his is not surprising because the size of l’1 is
too snlall to run on the parallel corrlputers. For in-
stance, when we divide the computation in a 31) par-
tit ion using 8 x 8 x 8 = 512 processors, each processor
will only have a computation domain of 43 grid points
and about only 430 particles. With such a small size
problem on each node, the computation tin]c bccorncs
srr]aller than the internode communication time. ‘i’hc
low efficiency sirr]ply reflects the fact that for F1 the
code is donlinated by internode cornrnunications. on
the other hand, we find that F2 performs much better
then F1 on multiple nodes because of its much larger
problcrr] size. (When F2 is divided into 512 processors,
each node has a computation domain of 83 grid points

3

-,,
.,

slid about 2.77 x 104 particles.) ‘J’lie parallel efficiency

. for F2 stays at z 95$Z0. ‘1’his demonstrates that a paral-
lel conlprrter is best suited only for large size prC)blellLQ,

Scaled I’rotrlcrn Size Analysis

We now study in detail the parallel cfhcicncy for
scaled problem size. In a scaled problem size analysis,
ww krwq) tile problen] size 011 eac}l individual processor
fixed while incrcrwing the total nurnhcr of processors.
‘J’llc total problclll size is t}lcn proportional to the nun~-
bcr of })roccssors used, ‘J’hc parallel cfficicrlcy in a scaled
problcrll size al)alysis is defined as

(11)

We consider two cases for scaled probler[l a~lalysis. In
the first case (S1), each node has 323 cells and about
2.22 x 105 particles (~ 7 particles/cell). When S1 is
loaded to all 512 nodes, the size of the total problem
bccor]les 2563 (1 6.8 million) cells arid 114 million par-
ticles In the second case (S2), each node ha~ 163 cells
and 3.15 x 105 particles (W 77 particles/cell). ‘l’he size
of S2 on all 512 node is then 1283 (2.1 million) cells and
162 n]illion particles. We note that the memory size re
quired to ru~, S1 and S2 on each node are 10.4 hfbytes
and 11.6 Mbytes respectively. Considering the memory
limit of 12 h!bytcs per node, S2 represents about the
largest problem that one can fit onto the lbuchstonc
l)clta systcr[l. When S2 is loaded to all 512 nodes of
the l)clta, the total memory size is an equivalent of 5.9
G bytes.

‘1’bc parallel cflicicncics for S1 arid S2 as a function of
tllc processor rlunlbcr arc shown in Fig. 3. The results
show that a high parallel efficiency of (> 95% haq been
achieved.

‘J’hc run times used by different portions of the code
fc,r S1 and S2 arc shown in Fig. 4 rL~ a function of
the processor IIulnbcr. We find that the times the code
spc; lds on particle move, field uj)datc, and current de-
posit withirl each node (~k OVe, 2~”~rent, ~~idupd.te) staY

as a constant. ‘1’his is because these three code portions
do not involve internode communications, and our d~
I]lail] dcco]I]position hrwr wwigncd an equal anlount of
calculation to each processor. “J’hc tirrlcs spent by the
code portions that involve internode conlmunications
(~L~~,, 7j4,, and 7~~,”,) incrc~qcs somewhat a~ the
~lodc nur[hcr increases. IIowever, due to the large prot)-
lcnl size on each node, the run tirnc is dominated by
“I)roductive” calculations. For the prob]enm considered
llcrc, the most coll]putation intensive portion is particle
Jjusl] within each node. I[cnce, the increase of commu-
IIication only has a nlirlirrlurll effect on the overall code

~)crformancc. As Fig, 4 shows, the total run tinle is
approxl~llate a corlstarlt ~q the procc.ssor nurnt]cr is irl-
crea~cd,

In our calculations, the guard cell nurriber and the
size of comrrmnicatcd rncssage is indeperrdent of the pre
cewor number. Ilowevcr, the timing results in Fig. 4
shows that the guard cell communication tirnc increases
a~ t}le procc,lsor nurr]hcr increases. l’his is a~)parcntly
a result of the I)clta hfesh contention since the nunlber
of messages and rrlcssagc size exchanged by each pro-
cessor is constant. WC also note t}lat, in both cases,
the field solve tin)e represents only a very small frac-
tion of the total tirllc (7jie{d/7iOt < 2.4% for S1 and
ljiel~/7~Ot < 0.5% for S2). AS a test, in some other sirrl-
ulations wc have used N 5 particles/ceil. F,vcn at such
a low particle rlumbcr/grid ccl] ratio, wc find the field
solve still takes < 4% of the total ti~ne. ‘1’his den]orl-
stratcs that the finite diflcrencc field solve is extremely
efflcicnt for parallel com~)utcrs.

O~le of the most important rrlea~urc of a I)JC code’s
perforlnance is the particle push time per particle per
time step. ‘J’}IC particle push tirnc includes the times
spent on Irlovirlg particles, depositing currents, and re-
lated interprocessor communications (i.e. particle trade
and guard cell surmnation): 7~U,~ = 7h,0Ve + liro~c -t
,“,r.nt + ~]d,m,. For S1 and S2, the particle push times7’

on the 512 node I)clta arc as follows:
~~u,k & 119 ilSCCS/I)artiCIC/tinle Step

for S1(114 rrlillion particles, 2563 grid cells)
7~”,h & 115 rw42cs/particle/tirrle step
for S2(162 rr,illion particles, 1283 grid cells).

I’erforlnance on Delta vs. Performance on Gay-.—. .—

Finally, we ccmparc the overall performance of the
code on I)clta with that on Gay su~>erconlputers. 1’WO
Cray computers were used for this analysis. ‘J’he first
one is the Cray Y-MI’ at JPI.. The rrlcrnory limit on the
J]’]. Cray Y-MI’ is 16 Mwords or 128 Mbytes. The sec-
ond one is one of the larges Cray supercornputcr avail-
able, the Cray C90 at NASA Ames (“J’hc Von Ncurrlan).
‘J’hc rrlcrnory lirrlit on the NASA Ames Cray C90 is 128
Mwords or 1.024 Gbytcs. ‘1’he rnerrlory liniit on Intel
IJclta is about 6 tirrlcs larger than that of the Cray C90.

Other than the rrlcssagc-passing and global communi-
cations, the Cray version of the code is identical to the
parallel version, ‘J’he Cray version of the code is conr-
piled using the Cray Fortran compiling systcrn’s auto
rr)atic vcctorization and optiniization. IIowcver, no re-
writing waq done to optirrlizc the gather/scatter for the
Cray. All the Cray runs were carried out on a single
C1’u.

Irl Fig. 5 we plot the total run tirrrcs for the S1 and

4I

. .

S2 crLwM ~~ a function of the “problcrn size”. ‘1’hc unit
!. of t}lc prot)]clll size is dcfirlcd m the problerll size o n

1 node of the lklta computer. For S1 (Fig. 5a), t}le
sim unit is 2.22 x 105 particles and 323 grid cells. For
S2 (Fig. 5b), the size unit is 3.16 x 10s particles and
1 63 grid CCIIS. I)UC to ttle memory limits on the Cray
supcrco[l~puter, not, all S1 and S2 problems can be run
on the Cray. I,’or instance, the largest S1 problem wc ran
01] the Cray C90 was size e 134.6 (1643 grid cells and
2.98 x 107 particles) and the largcs S2 problcm we ran
was size N 91.13 (723 grid cells and 2.9x 107 particles).

‘1’0 corllparc the pcrformancc, w e shall define t h e
Iklta s}wcdup as

(12)

l“or sn]all I)roblerlw, t h e Cray supercomputer per-
forll~~ nluch bct,ter tharl the parallel computer. Conl-
paring to Cray C90, the spcedup factors at size = 1 are
S v O.1O for S1 and S’ & 0.12 for S2. }Iowcver, aq the
i)roblcr[l size increa.ws, the tirnc spent on the Cray is ap-
proxir]]ate]y linear in the Log scale. While on t},c I)clta,
due to the high paral]cl efficiency, the total run times for
S 1 and S2 stay almost an constant as both the problem
size and processor number are irlcrersed. At size u 64,
wc find the specdup of the I)elta over the Cray C90 has
bcco~ncs S & 4.9 for S1 and S R 7.42 for S2. Extrapw
Iating the run times on Cray to size =-. 512, if one had
a Cray C90 large enough to run the size = 512 prob
ICI, IS, then the speedup of I)clta over Cray C90 would
bc about S E 49 for S1 and S ~ 58.7 for S2.

5. Summary and Conclusions-.—

A MIM1) paralhd 31) electromagnetic PIC code has
been developed on the 512 node lntel Touctlstone I)clta
systcnl. ‘1’}lis code is txwed on the General Concurrent
I’IC (CSCI’IC) algorithm[l] which uses a donlain decorn-
position to divide the corrlprrtation among the proces-
sors. ‘1’brec nlajor message-pa9sing operations, parlicle
inrdc, guard cell ezchange, and guard cell sun~tnation,
are used to lirik the cornputatiorm in different proces-
sors together, With 12 Mbytes me~noty lilllit per node
arid a total of about 6 Gbytes on all 512 nodes, the Intel
l)clta system allows our code to run simulations using
over 108 particles and 106 grid cells. The parallel effi-
ciency of this code is evaluated using both fixed problcrrl
analysis a[ld scaled problcm analysis. It ie s}lown that
our code rurls with a high parallel efiicicrrcy of c > 95’?ZO
for large size problems. “l’he particle push tirrlc we have
achicvcd is 115 rlsccs/particle/time step for 162 million
~)articlcs on 512 nodes. ‘l’he overall perforr[]ance of the

code on the Iklta is also coniparcd with tbfit cm Cray
sllr)ercorllr)~ltcrs. Cor]lparing with the runs on a Cray
C90, our code has achieved a factor of 58 spcedup on
the I)elta.

in the code, the electromagnetic field is updated
locally using a rigorous charge-conservation !3rlite-
differcnce leap frog nmtbod. We find, for parallel con~
puters, a finite difference field solve is significantly more
efficient than fa9t Fourier transfcrrrns. C)ur results shows
that the finite difference field solve generally takes < 1%
of t}le total CPU tinlc for problcrILs with about N 77

~)articlcs/cell ~r~d < 4 % ever] for problcnw wit}l w 5
particlcw/cell.

~ckrlowledgrrmrrts

‘1’he authors are grateful to E. }Iuang for her }Iclp in
ir[lplcme.nting the code on the Intel Iklta parallel corrr-
puter and for many useful suggmtions through out this
rcscarcb. Wc would also like to ackrlowledge uscfrrl dis-
cussions with F. ‘J’sung, q’he simulations on Cray C90
were carried out with the help of }]. hfackcy, ‘1’bis work
wa~ carried out by the Jet I’repulsion I,aboratory url-
dcr contracts from Sandia National Laboratory and US
Dcpartrr]ent of Energy through agreements with NASA.
Access to the lntel l’oucbstone Delta Systcw, which is
operated by Caltech on behalf of the Concurrent Super-
computing Consortium, was provided by JI’1,, Access to
tbe Cray supercomputers w~q provided t,y the J1’L Su-
pcrconlputing l’rojcct, which is sporreored by J 1’1, and
NASA OfIice of Space Science and Applications,

[1]

[2]

[3]

[4]

R e f e r e n c e s

P. C. Liewcr and V. K. Decyk, A General Concur-
rent Algorithm for Plasma l’article-irl-Cell Silmrla-
tion Codes, J. Computational Physics, 85, 302-322
(1989).

M. Kiefer et al, Architccturc and Conlputing Phi-
losophy of the QUICKS1l,VRR, Proceedings of Con-
ference on Codes and the I,incar Accelerator Cotr\
rrmnity, (1 990).

J . Villmcnor a n d O . Hunernan, Rigorous
Charge Conservation for I,ocal Klcctrorrlagnctic
Field Solvers, Cornprriev Physics C’ornwunicaiions,
69, 30G316 (1992).

O. Ilunernan et al, Solar Wirld-Magnctospbcrc In-
teraction as Simulated by a 3-D EM Particle Code,
ll;EE 7kan9. Plasma Science, 20(6), 810816 (1992).

5

[5] G. Fox ct al, Solving Problcrm on Concurrent I’rc
,. ccssors V.], l’rcr~ticc-llall, New Jersey (1988).

[6] R. 1). Ferraro, 1’. C. I,iewcr and V. K, l)ccyk, Dy-
narllic l,oad IIalancing for a 21) C o n c u r r e n t }’IC
Code, J. Cornputatioriai Physics, (to bc published,
1994).

Figure Captions-.

Figure 1: 31) clcctromagnctic GCI’IC code flow

l~igur’c 2: Code performance for fixed l)rObhXIL~. a)
l’arallel cflicicncy. b) ‘1’imcs for various code portions.

Figure 3: Code pcrforrnancc for scaled problems: par-
allel cflic.icncy.

Figure 4: Code pcrforrnancc for scaled problcrrw:
ti]lws for various code portions.

Figure 5: Run time on l)clta vs. run titnc on Cray.

*’.

‘>

3D Electromagnetic GCPIC Code Flow
~--__.. —- ———.. . .

r——————_._4!?KJJ&iEE3Jl— —-
Relativistic

~

.

Electromagnetic
Particle Push — _

Fill Guard Cells
Time Step Cycle for Currentr— . ———’~

1st Half of B Advance

1 Exchange Guard
Cells for E

f ————

2nd Half of B Advance
m ,)

Exchange Guard
Cells for B

1

0.8

0.6

0.4

0.2

0

0

102

1o”’

10”2

a: Parallel Efficiency for F ixed Problems

4,, , L I

3

b:
r–, ,-,

‘“’ ~mz-,, -, ,-, -,,

n--+- F1
–-+- F2

small problem

,,, ,,

Log2(nproc)

t ,,, ,,

6

Time8 for Various Code Portions

9

.—_—
-+– TIOI(FI)

++ TPush(Fl)

+ - Tfield(Fl)

1, 1

3

--0’- Tklt(F2)

~ Tpush(F2)

+ - Tfield(F2)

1,, ,,, I

6 9
Log2(nprocj

T-itjure Z

~
c
a.-
0.-

b&-

m

1 >= 959’0

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2 - -.

0 L“J_L_&_L_l._. -_L_L-.L _.—A_..L_l.u..- ..-.u. -.-1
0 3 6 9

log2(nprocs)

.
,0,’

10’

10°

,..1

10” 2

0

I o?

10’

10°

10”’

10” Z

o

S1: 2.22E5 particles 32768 gird cells per processor
. ,. 1,,. ,r_ .

~ Ii”””---”’

—e- TIC, I

+ Tpuih

——_ __

. .. —_._.

--+-— --—. — __*_
Ptrlkla htOVO

- * - - - - - . — . . . — ...—~ .

Current Dopoctt

Tolal

—-~ ~-.—.

‘ - 7

-.
● Tmow

Partlc16 Puth
--- — —.. __ __ __

- m- T~”,,, n,

. . . _ _ . . . _ _ -. -. + Tflbld

- A- Tfldupd~!*

Pati Tmdo + EC
. - * - - - - - - - - - - ---.-- - - --— _ _ _ _ _ _ _ _ _ _ _ , __ _ _ < =—= - - - - . —.— -4-

FlcJd SOIw

---- ---— _- — -- =_-—-

----- _____ .-- A._. UP4b Fl#d—.—. _ _ _ _ _
.. B- Fbld Wrd Colr+ 8c” - “

..*... =.. =... _-& L..-+

. . . ” * .* -.. . . ----- ------ -----
-..

,..-. Cwwd wad CM + EC
,”””

... ,,

S2: 3.16E5
~–--, . ._. —_,.

1,, ,,

3

Log2(nproc)

partlckm 4096 grid
,--- ..7.. . - --- ._ ,

,,

6

c e l l s p e r

. ,.–. –7

,,. . __,

9

processor

-.. –—-.
i

Partlclo Push
—--–—&———— —.— 1.— _ __ _

-—P&LMGb---— -—————-

—.. .— . . . _ . ..+ - - - — . . . _ _ _ . . . _ . M -- _.,..-.

I

.— .-. _ _ _
Cum$nt DSpXII

Pattkb T- + sc
●- - - - - - - - - - - - - - - - - - -

- - - - - ● - - - - - - - -
- - - - -

Flbld Sdvb
— - — - — — . — — — - —+. — -—- —

- — -
/ fw9uud C4+Bc. . .

- - - - -.=- -m - - - - - - - - - - - -
.* ...-.* . ----

. . :. . . .
mm! ad WI ● Bc- ”.-:. .

. --- - :--. —. —-. - . . _A___
. . . - ” u~~~wd----..-.&.._ --- . --_._,._,

., 1. ,..

3 e 9

Log2(nproc)

my!-< II

, b Ttradb

222-

-* Tmow

+-- TCU,,, nI

‘+ Tflcid

A- Tfldupdat#

~- Ttrad.

● Tgdfl

+ - Tgdam

S1 size unit: 2.22E5 part icles 32768 grid cells
103 !,, ., ,.,-1”””-””:::;:”,., . . .,, .

... ,=. ,., ::, .

r7
-, . . .,,0 ,,.

—--=+--Delta l.: :.:~:
‘* Cray C90 “ “-’ ”--

‘-@- C r a y Y - M P ‘“ ‘“ ‘ “-””
.,, , ‘ >~-,.,
. +. .4

- .—. —— -_., ... ~. . . .,. ...
. i.

.,4

.,, i,X . . .

. . I102

10’

., . ..-.
L- .:/: s;.:;.. J.~–— L.L .;

,&.e.7

.:./ ._-. . .1
64..nc e

F—----------+-j
-i -.+.

10°

100 10’
Problem Size

102 1032.k~E5 particles
32768 grid cells

S2 size unit: 3.16E5 particles 4096 grid cells

103

I

1 ’
10° L–. - ..L

10°
3.16E5 parllcle$
4096 gr id cells

10’ 102 103
Problom Size

